Chapter 8 Arrays

Single-Dimension Arrays

When you plan to introduce a group of option buttons or check boxes on a form, if often makes sense to create a control array. A control array is a group of controls that all have the same name. All controls in an array must be the same class. An advantage of using a control array, rather than independent controls, is that the controls share one click event. You can use a case structure to determine which button or box is selected.

For example, assume that your are using a group of five option buttons to allow the user to choose a color. After creating the five buttons begin setting the properties by setting the name property. Name the first option button optColor. Then chage the name property of the second option button to optColor also; a message box will ask whether you want to create a control array.

After you select yes, the name in the top of the properties window becomes optColor(0) for the first control and optColor(1) for the second. The number inside the parentheses is called an index and is used to refer to the specific control within the array. All subsequent controls given the same name will automatically have an index attached.

The case structure

When ever you want to test a single variable or expression for multiple values, the case structure provides a flexible and powerful solution. Any program decisions that you can code with a case structure can also be coded with nested if statements, but usually the case structure is simpler and clearer.

Ex.

Select Case intScore

Case is >=100

lblMessage1.Caption = “Excellent Score”

lblMessage2.Caption = “Give yourself a pat on the back”

Case 80 to 99

lblMessage1.Caption = “very good”

lblMessage2.Caption = “You should be proud”

Case 60 to 79

lblMessage1.Caption = “Satisfactory Score”

lblMessage2.Caption = “You should have a nice warm feeling”

Case Else

lblMessage1.Caption = “Your score shows room for improvement”

lblMessage2.Caption = “”

End select

Note:

· When using a relational operator (Is >= 100) the word Is must be used.

· To indicate a range of constants use the word To.

· When you want to test for a string value, you must include quotation marks around the literals.

Testing option buttons with the case structure

When the user selects one of the option buttons, their common click event occurs.

VB passes Index as an argument to the event procedure. Index holds the number of the selected buttons.

Ex.

Private sub optColor_Click(Index As Integer)

‘set the color to match the option button

Select Case Index

Case 0

lblMessage.ForeColor = vbBlue

Case 1

lblMessage.ForeColor = vbBlack

Case 2

lblMessage.ForeColor = vbRed

Case 3

lblMessage.ForeColor = vbWhite

Case 4

lblMessage.ForeColor = vbYellow

end select

end sub

Single Dimension Arrays

A variable array can contain a list of values, similar to list of combo box or list box. You can think of an array as listbox without a box. Any time you need to keep a series of variables for later processing, such as reordering, calculating, or printing, you need to set up an array.

When you have to store multiple values, use an array. An array is series of individual variables, all referenced by the same name. Some times arrays are referenced to as tables or subscripted variables. Individual elements of array for storing names may be strName(0), strName(1), strName(2), etc

The subscript (which may also be called an index) inside the parentheses is position of the element within the array.

The subscript may be constants, variables, or numeric expressions. Although the subscripts must be integers, VB will round any non integer subscript.

You specify the number of elements in a dim array.

Dim arrayname([Lowersubscript to] uppersubscript) [as datatype]

Dim strname(0 to 25) as string

Dim curBlance(10) as currency

Dim gstrProduct (1 to 100) as string

Dim mintvalue (-10 to 10 as integer

The dim statement allocates storage for the specified number of elements and initializes each numeric variable to 0. In the case of string arrays, each element is set to an empty string. It is not necessary to specify the lower subscript value. If no value is set for the lower subscript, then the lowest subscript is 0.

Arrays can be dimensioned with empty parentheses

Public gsrtCustomer() as string

This type of an array is referenced as dynamic array because the number of elements may change during program execution by using the redim statement. All other arrays are static arrays. Each static array may be dimensioned only once in a project. Any attempt to change the size of a static array after its first use causes the following error message; Array already dimensioned.

Initializing an Array using for Each

Although numeric values are initially set to 0, it is sometimes necessary to reinitialize variables. To zero out an array each individual element must be set to zero.

For each vnTotal in intTotal

VnTotal=0

Next vnToal

User defined Data type

A user defined data type can be used to combine several fields of related information. For example an employ data type can have firstname, Lastname, SSnumber, street, city, date of hire, pay code.

The fields can be combined into a user defined type using Type and End type.

Once you have created your own data type, you many use it to declare variables just as you use any other data type. The recommended prefix is udt.

Type statements can appear only at the module level in the general declarations section of a standard code module or a form module. When placed in a standard code module, they are public by default, if type statements are placed at the module level of form, they must be declared as private.

‘in general declaration section

option explicit

Private Type Item

intCount as Integer

strDecription as string

end type

private type saleDetail

curSales(7) as currency

end type

private type product

strdescrition as string

strprodno as string

intQuantity as integer

intPrice as currency

end type

‘declaring variables and arrays of the type

Dim udtWidget as Product

Dim udtInverntory (1 to 100) as product

Dim udtHomeFurnishings as SalesDetail

Accessing information with user defined data types

udtWidget.strDescription

dtWidget.intQuantity

udtInverntory(intindex).strDescription

udtInverntory(intindex).intQuantity

udtHomeFurnishings.cursales(intindex)

A variable that is not an array, such as udtWidget does not need an index. But udtInventory which is defined as an array, you must specify an index for the array before using the udtInventory item. UdtHomefurnishings is a different situation, the variable was dimensioned as a single variable and not an array. But in the type statement there are 8 elements in the data type. Therefore, you must use an index on the element within the data datatype.

Note: you could even declare an array of a datatype that includes an array, this type of array requires an index on the variable name and another index on the element name.

Using array elements as accumulators

Array elements are regular variables and perform in the same ways as all variables used so far. You may use the subscript variables in any way you choose such as counters or total accumulators.

To demonstrate the use of array elements as total accumulators, eight totals will be accumulated. For this example, eight scout troops are selling raffle tickets. A separate total must be accumulated for each of the eight groups. Each time a sale is made, the number of tickets must be added to the correct total.

Dim intTotal(1 to 8) as Integer

Declares 8 accumulators

Assuming the user inputs a group no into text group along with sales.

Intgroupnum= val(txtgroup.text)

If intgroupnum>=1 and intgroupnum <= 8 then

intSale = val(txtSales.text)

intTotal(intgroupnum) = intTotal(intgroupnum) + intSale

else

msgbox “enter a valid group number”

end if

Table lookup

Reconsider the scout groups if they are numbered 101,103,110,115 etc, to add the sales to the correct total you must do a table look up.
Private type GroupInfo

intNumber as Integer

IntTotal as Integer

End type

Dim mudtGroup(1 to 8) as GroupInfo

mudtGroup(1).intNumber =101

mudtGroup(2).intNumber =103

mudtGroup(3).intNumber =110

mudtGroup(4).intNumber =115

etc

dim intgroupnum as integer

dim intIndex as integer

dim intsale as Integer

dim blnFound as Boolean

blnFound= false

intIndex =1

intgroupnum = val(txtGroup.text)

do until blnFound or intIndex>8

if intGroupnum = mudtGroup(intIndex).intNumber then

intsale = val(txtsale.text)

mdtGroup(intIndex).intToal = mudtGroup(intIndex).intTotal + intSale

blnFound = true

end if

intIndex = intIndex +1

loop

if blnFound= false then

msgbox “invalid group number”

end if

The above table lookup technique will work for any table whether it is integer or string. It is not necessary to arrange the fields being searched in any particular order.

Using List Boxes with arrays

In the above example it is better to add the eight group numbers to list and allow the user to select one and enter the sales.

Dim mintoal (0 to 7) as integer

Dim intgroupnum as integer

Dim intsale as integer

if lstgroup.listIndex <> -1 then

Intsale = val(txtSale.text)

intgroupNum = lstGroup.listIndex

minTotal(intgroupNum)= minTotal(intgroupNum) + intsale

else

msgbox “you must select a group number”

end if

The Item Data property

List boxes and combo boxes got a handyproperty called itemdata in which you can store a number. This does not get changed even if you sort the items. Just like you set initial value for itemdata property just like you set the value for list property.

Object.itemdata(index) [=number]

The values that are placed in the itemdata property do not need to be in sequence. In our earlier scouting example, we could give names to the groups and have those names associated with the group numbers.

The value stored in the itemdata property is a long integer, but it may hold any numeric value you wish. Using ItemData is an easy way to assign such things as a product number to a description.

Adding items with itemdata to a list

Lstgroupname.AddItem txtgroupName.text

lstGroupName.ItemData(lstgroupname.listCount -1) = txtgroupNumber.text

How ever if your list is sorted, the additem method adds the new item alphabetically in the list. You can determine the index of the new item using the NewIndex property, which VB sets to the index of the new item.

Lstgroupname.AddItem txtgroupName.text

lstGroupName.ItemData(lstgroupname.newindex) = txtgroupNumber.text

this method can be used for an unsorted and sorted list.

Multidimensional array

You may require two subscripts to identify tabular data, where data are arranged in rows and columns. Many applications of two-dimensional table quickly comes to mind –insurance tables, tax tables, addition an multiplication tables, postage rates, etc.

The dim statement specifies the number of rows and columns.

Dim arrayname([lowerlimit to]upperlimit, [lowerlimit to] upperlimit) as datatype

Dim strname(2,3) as string

Dim strname(0 to 2, 0 to 3) as string

This establishes an array of 12 elements, with three rows and four columns. You must always specify two subscripts when referring to individual elements of the table.

Strname(1,2)= “value”

Lbldisplay.caption = strname(1,2)

Initializing two dimensional arrays

Dim introw as integer

Dim intcol as integer

For introw = 1 to 3

For intcol = 1 to 4

Strname(introw, intcol) = “”

Next intcol

Next introw

You can also initialize all 12 elements with a for each statement.

Dim vntname as variant

For each vntname in strname

Vntname=””

Next vntname

Printing two dimensional table

Dim vntname as variant

For each vntname in strname

Printer.print Vntname

Next vntname

If you wish to print the entire row in one line

For introwIndex = 0 to 2

Printer.print strname(introwIndex,0);tab(15); strname(intRowIndex, 1); tab(30); strname(intRowIndex, 2); tab(45); strname(intRowIndex, 3)

Next introwindex

Summing two dimensional tables

Dim curAmount (1 to 4, 1 to 6) as currency

Dim curRowTotal(1 to 4) as currency

Dim curcoltotal(1 to 6) as currency

Dim intRowIndex as Integer

Dim intColIndex as Integer

For intRowIndex = 1 to 4

For intColIndex = 1 to 6

curRowTotal(intRowIndex) = curRowTotal(introwIndex) + curAmount(introwIndex, intcolIndex)

curcolTotal(intcolIndex) = curcolTotal(intcolIndex) + curAmount(introwIndex, intcolIndex)

next intcolindex

next introwindex

lookup operation in two dimensional tables

When you look up items in a two dimensional table you can use direct reference and table lookup

1. to use direct lookup row and col subscripts must be readily available. You can tally the hours of each of five machines identified by machine nos 1 to 5 and each of four departments 1 to 4

intRowIndex = val(txtMachine.text)

intcolIndex = val(txtDept.text)

curHours = val(txthours.text)

curMachineTotal (introwIndex, intColIndex) = curMachineTotal (introwIndex, intColIndex) + curHours.

2. a table lookup is most common lookup

Many two-dimensional tables used for lookup require additional one dimensional array or lists to aid in the lookup process. For example use a shipping rate table to lookup the rate to ship a package. The shipping rate depends on the weight of the package and the zone to which it is being shipped. You can design a project with weight and zones as combo boxes or use text boxes and allow the user to input data.

Using list boxes

A list box holds the weight limits and another list holds the zones. The values for the two lists are set with List and itemdata properties at design time. The five by four table is two dimensional, and the values are preloaded.

Dim curate(0 to 4,0 to 3) as currency ‘ the array for lookup

Dim intwtSub as integer

Dim intzonesub as integer

Intwtsub = lstweight.listindex

Intzonesub = lstzone.listIndex

If intwtsub <> -1 and intzonesub <> -1 then

Lblshipping.caption = mcurRate(intwtsub, intzonesub)

Else

Msgbox “please select the weight and zone”

End if

Using textboxes

If you are using text boxes rather than list boxes for data entry, the input requires more validation. Both the weight and zone entries must be looked up before the correct rate can be determined. The valid wt and zones will be stored in separate one dimensional arrays. Values to this two arrays and the five by four rate table should be preloaded.

intweightinput = val(txtWeight.text)

blnweightfound = false

intIndex =0

do until blnweightFound or intIndex > 4

if intweightinput <=intWeightz(intIndex) then

intWeightsub = intIndex

blnweightFound = true

end if

intindex = intindex +1

loop

if not blnweightFound then

intweightsub = 4

end if

blnzoneFound = false

intindex =0

do until blnzonefound or intIndex>3

if txtzone.text = strzone(intIndex) then

intzonesub = intIndex

blnzonefound = true

end if

intIndex = Intindex +1

loop

if (intweightsub >= 0 and intweightsub <=4) and (intzonesub >=0 and intzonesub <=3) then

lblshipping.caption = mcurrate(intweightsub, intzonesub)

else

msgbox “ invalid zone or weight”

end if

ex. Project

Create a project for R’n R for reading refreshment that determines the price per pound for bulk coffee sales. The coffees are divided into categories. Regular, decaf, special blend. The prices are set by the ¼ pound, ½ pound and full pound. Use a find price command button to search for the appropriate price based on the selections.

Create a user defined datatype that contains type, amount, and price. Set up a variable called muttransaction which is an array of 20 elements for your data type. Each time the find price button is pressed add the data to the array. When the exit button is pressed print appropriate headings and the data from the array.

